PROBLEM DESCRIPTION
Given a sorted array of integers A
(0 based index) of size N
, find the starting and the ending position of a given integer B
in array A
.
Your algorithm’s runtime complexity must be in the order of O(log n)
.
Return an array of size 2, such that the first element = starting position of B in A and the second element = ending position of B
in A
, if B
is not found in A
return [-1, -1]
.
SOLUTION
We can use binary search two times - first to get the starting index and then to get the end index.
The main condition in binary search which will change is:
For start index:
1
2
3
4
if(A[m] == B){
idx = m;
r = m-1;
}
For end index:
1
2
3
4
if(A[m] == B){
idx = m;
l = m+1;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
public class Solution {
// DO NOT MODIFY THE ARGUMENTS WITH "final" PREFIX. IT IS READ ONLY
public int[] searchRange(final int[] A, int B) {
int startIdx = startIndex(A, B);
if(startIdx == -1) return new int[]{-1, -1};
int endIdx = endIndex(A, B);
return new int[]{startIdx, endIdx};
}
public int endIndex(int[] A, int B){
int n = A.length;
int l = 0;
int r = n-1;
int idx = -1;
while(l<=r){
int m = (l+r)/2;
if(A[m] == B){
idx = m;
l = m+1;
}else if(A[m] > B){
r = m-1;
}else{
l = m+1;
}
}
return idx;
}
public int startIndex(int[] A, int B){
int n = A.length;
int l = 0;
int r = n-1;
int idx = -1;
while(l<=r){
int m = (l+r)/2;
if(A[m] == B){
idx = m;
r = m-1;
}else if(A[m] > B){
r = m-1;
}else{
l = m+1;
}
}
return idx;
}
}